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In the present paper we examine the behavior of a 3-branched linear map which resulted from computations
of the periodically perturbed Oregonator. It turns out that the linear map describes quite satisfactorily the
period composition predicted by the chemical model and by the more elaborated nonlinear hyperbolic maps
that were described in a previous publication. In particular, we have shown that in any interval of the control
parameter, two periodic orbits, differing by one point, coexist with one being stable and the other unstable.
This phenomenon is, to the best of our knowledge, described for the first time in the literature.

1. Introduction The paper is organized as follows: in section 2 we describe
the properties of three-branched maps and define a family of
linear maps. In section 3 we describe results and in section 4
the results are discussed, differences between our map and others
are analyzed, and conclusions are presented.

One-dimensional return maps are very useful tool in the
investigations of the dynamics of nonlinear systems. The most
well known examples of such maps are the logistic freapd
the sine or circle map. Another, less known example, is the
cusp map. In the field of theoretical biology, Glass and
Mackey* and Keeneret al® have used a variety of maps to
investigate such problems as “integrate and fire” models. In nonlinear (hyperbolic) maps there may be two cases: (a)
Swinney and his collaborators have used logistic and sine maps the first branch touches (and intersects) the diagonal béfore
for investigating various aspects of the BZ oscillations, period approacheks or (b) the first branch does not touch the diagonal
doubling and chaos formation. Two extrema maps were usedbeforek; approachess.
by Ringlandet al” to explain the smooth transformation from It is obvious that in case a the first branch must be curved.
U to Farey sequences observed in some cases. The maps cahhus, the replacement of hyperbolic maps by linear ones is
be constructed from the experimental data as well as from the reasonable only in case b. We restrict our study to this latter
numerical solutions of appropriate kinetic equations. Other case.
types of maps are also possible, as the three-branched map to The three-branched linear map, calléd), is defined as
be described in the present paper. follows:

Markman and Bar-Efistudied a periodically forced Orego-
nator and found a parameter range near a saddle-node bifurcation f0) =1, + (1- Il)x for 0<x<k 1)
with the following properties: (1) Patterns of large and small 1 1 k, - hT e
oscillations are found in a frequency locked intervals. (2)

Between any two such intervals there is an interval with a (I, —1)

concatenation of the two patterns. Following this paper we LX) =1,+ W(X —ky) for k,<x<k; (2)
found a family of 1-D mapswhich describes in a satisfactory (ks = ko)

way the calculated results.

The family of maps studied in ref 9 transforms the interval fo(x) = 2
[0, 1] onto itself and consists of 3 branchdse., it is 1—ky)
discontinuous at two points (sdg andks). Its inverse also
transforms the unit interval onto itself; it is a function and is With the conditions 0< k; < ks <1 and 0< 1l <y < 11in
discontinuous at two points (sdy andl;). Every branch of  order that the three branches will always exist. Thus the map
the map is an increasing function »fand is determined by a  is defined on the interval & x < 1 and is discontinuous at
hyperbolic curve. The family depends on the bifurcation = kz and atx = ks.
parametek, which defines the first point of the discontinuity Since the map is invertible and linear, it is easy to write its
of the map. inverseg(x) = f~1(x) as follows:

These nonlinear (hyperbolic) maps are difficult to study and

2. Family of Three-Branched Maps

(x—kg) for k;=x=1 3)

we have chosen, therefore, to examine in more detail the 3
. . ' ! o =—X+ <x=<
behavior of linear maps which are a reasonable approximation 9,09 I, Xtk for 0=x<l, )
to the maps described in ref 9.
The aim of the present paper is the description of discrete k; — k,
dynamics generated by linear maps with three branches and the %) = - |2(X —l)+k for I, <x<I, (5

comparison of the results with those of nonlinear maps and the
kinetic differential equations studied in ref 8.

k2
. . gs(x)=ﬁ(x—ll) for |1$ x=<1 (6)
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Figure 1. A plot of a typical 3 branch map (eqs-5) for the fixed
parameter&:01’|2:OOSIK,g:Og?Sandthevanab'eparameter W.OO:'Huuvuv—ruuuuuu\HHHHHHHHHHTTWE:
k. = 0.3. The thick line is the map, while the thin line shows the 3’ i
diagonal. _— /
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Figure 2. A plot of x vs 0.29< k, < 0.33, showing the stable orbits oee E —
(thick lines) and the coexisting unstable ones (thin lines) which occur 1, | ]
in this region. The pattern of the SO, kSFS, while that of the UO, ] . i ]
is FFTF,S 0.60 7 f :
The inverse map transforms the unit interval onto itself and is LS_X/ ,:
discontinuous ak = |, and atx = l. This inverse map may T B 1
prove useful when calculating the unstable orbits (see below). = T .
The parameters used in our particular calculations are R B / }
0.1,1,=0.05,ks = 0.975, andk; is used as a control parameter. U 0203~ 1 ]
This linear map has, as can easily be seen, the general properties . l‘ / ]
of the nonlinear maps described above, and can, therefore, serve i ' / T
as a good approximation for them in case b. 11 - ]
In Figure 1 a typical linear map fok, = 0.3 with its three oo oan oA e T TR T e
branches is shown. On the left the first branch rises frpm %
0.1 atx=0to 1 atx = k; = 0.3; to the right of the diagonal,  Figure 3. A series of plots showing the way the fifth (thick lines) and
the second branch rises frdm= 0.05 atk, + é to|; atks — sixth (thin lines) iteration of the map change kasmove fromkz, =

o; finally, the thirrd branch rises from 0 & to I, at 1. The 0.290 241 tdke = 0.327 53. (The only significant “pieces” are those
figure is very similar to Figure 3 of ref 9 in which a three- near the diagonal.) (& = ke The “staircase” of stable and unstable
branched hyperbolic map is shown, thus substantiating our Parts just touch the diagonal at the beginning of the regiork{t;

- . . 0.3 The “staircase” is in the middle of the region. &)= kze The
assumption that linear maps may Sgrve as a good simple WaYstaircase” just detach from the diagonal at the end of the region.
to study the more complicated nonlinear system.

A cycle of n points, &, X2, ..., Xn) Or ann periodic orbit, respectively. Thus a pattern will be a sequencé&,db andT
(whether stable or unstable) will existfif(x) = x (i = 1, 2, points. The stability of the orbit will be determined by the
..., N). The points will be termedF, S, or T if they belong to product of the slopes at the points the orbit will be stable
the first region {y), second regionf{), or third region {3), (unstable) if the product is smaller (larger) than 1. Since the
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map is linear, it is easy to see that the slopes are given by

1-1; 0.9
S i i (7
=1 005
27—k 0.975—k ®)
|
S=—— =2 )

1-k

As the parametek, changes, a variety of orbits and patterns
will appear, only once, at some interval lof

All periodic orbits appear as pairs of stable, SO, and unstable,
UO, orbits, which differ by one in the number of points. Every
pair SO and UO begins &, where the appropriate “piece” of
thenth and @ + 1)th iterate ofks touch the diagonal together.
The interval for this pair of orbits ends k. where thenth and
(n + L)th iterate detach the diagonal. The valuekgfindksye
are the solutions of the following equations:

f (k) =k, = 0.975 10
3. 3

an(kze) = koe (11)
These equations are thet 1 iterates of the discontinuities of
the map. In what follows we show that at these pointsrihe
and the ( + 1)th iterates coincide.

It is easy to see, from the definition of the mi{g), that the
following transformations are fulfilled:

0—1,
0+0—I,+0s
k, —0—1-90s,
k,—1
k,+0—1,+0s,
kKz—o6—1,—9s,
k;—0
ks+06—0+ds;
1—1, (12)

The discontinuities at the break poittsandks are clearly seen
aso — 0.

Suppose now that the poiks — 6 belongs to am periodic
orbit at somek;, slightly larger thankz,. There will be a
sequence of points of the form (sequence I):

n points

/1—652, vy k3—8, /1—652, vy

As 6 — 0, the first point will approacth, whereas the last
point will approachks. At exactly 6 = 0 a new sequence
(sequence 1) witm + 1 points will be formed, namely,

U]

n+1 points

— ()
k3, 0, h ..,

k3, 0, /1,

which has anF and T points (with x 0 and x = ks,
respectively), instead of th® (with x = ks — d) point.

Kawczytski and Bar-Eli
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Figure 4. A typical histogram of 0.2< k, < 0.4. The values ok, and
ks = 0.975 are shown as thin lines. Only the stable points are shown.

At the other end of the interval, when the poikf is
approached, we obtain the following sequencenopoints,
namely (sequence lll),

n points

ke + 8, b+ 3sy, ..., kpg+ 8, bh+3sy, .. (| ||)

which has its limit in a the sequence IV of+ 1 points:

n+1 points
— (V)
k2ey 1, /2, ey

ke, 1, by, ..

Again, sequence IV has daandT (X = ke andx = 1)
points instead of ai® (x = kge + ) point in sequence Il

By changingk, continuously fromksy, to ko, Sequence | is
changed smoothly to sequence lll, while sequence Il is changed
to IV. Thus, at each value d&, in the interval kap, kod, two
sequences (orbits, patterns) coexist: one wigfoints and the
other withn + 1 points. The sequences or patterns will differ
by one point where aB point is changed to aRT pair. One
of the sequences will be stable and the other will be unstable
(depending on the ratimss/s,; being larger or smaller than one).

The above description can be clearly seen in Figure 2 which
shows a plot ofh points of SO anch + 1 points of UO as a
function ofk, between 0.290 241 and 0.327 53. The plot, zigzag
shaped, has the unstable portions (in thin lines) going up from
left to right, while those of the stable portions (thick lines) are
going down. At the extreme endse., atky, andkye the SO
and UO join together, as described above.

In Figure 3 we show an example of the touching and
detaching of the pair of patter®SF,SandFFTF.S by plotting
the fifth and sixth iterates of the maplat, = 0.290 241k, =
0.3 at the middle of the interval andlgt = 0.32753. In these
figures we see the fifth (thick lines) and sixth iterate (thin lines)
form together a sort of a “staircase” where the SO form the flat
parts (slope smaller than 1) and the UO form the steep “jumps”
(slope larger than 1). Note that tmth iterate of the three-
branched map has2+ 1 “pieces” thus the figure contains some
more points than the “staircase” of interest. As will be seen
below, there may be more than one solution to equations 10
and 11,.e, there may be more than one pattern with the same
number of points, existing, of course, in different region&.of

3. Results

In Figure 4 we see a typical histogram showing the
dependence of thetableorbits on the parametés in the region
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TABLE 1: Main Patterns of the Type FS,
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TABLE 2: Main Patterns of the F,S Type

pattern pattern pattern pattern

(stable) (unstable) Kap koe kap — Kae (stable) (unstable) kap koe koe — kap
S FT 0.0 0.05 0.05 FS FFT 0.102 857 14 0.267 944  1.65086%
FS(FT), FS(FT); 0.0500014 0.0500064 52 F.S RFT 0.36 0472216 1.122164
FS(FT), FS(FT);  0.050 008 3 0.050 031 2.278 FsS RFT 0.548 522 0.615817 6.729568
FSFT FS(FT), 0.0500429 0.0501292 8.638 F4S RFT 0.672 068 0.713194 4.112668
FSFT FS(FT), 0.0501705 0.0509472 7.767é FsS RFT 0.754 566 0.780454 2.588868
FS FSFT 0.0514918 0.0525201 1.02838 FeS RFT 0.811 621 0.828 255 1.6634682
FS FSFT 0.053997 3 0.0818099 2.7812&e F:S FFT 0.852 422 0.863186 1.072468
FS FFT 0.102 857 14 0.267 944 1.650868e FsS RFT 0.882 454 0.889348 6.894008
FoS RFT 0.905 104 0.909 363  4.259068
*Read as 5¢ 10°°. F1S RoFT  0.922541 0.924956  2.415008
F11S RiFT 0.9362 0.937296 1.096068
[0.2, 0.4]. The linek, andks are also drawn in order to stress F12S FoFT 0.947 059 0.947 193  1.340004

the various point§, S or T. On the left the patterRSis clearly
seen, while on the right one sees B& pattern. The composed

aRead as 1.65086 107

FSBSpatter_n appears in the middle._ Other compositions \_/vith solutions), and the paFSFT and FS(FT), appears instead.
more complicated patterns, occupying rather narrow regions, The change from adding &to adding arF T occurs when the
can be also seen in this interval. This behavior is typical for adding of the latter pattern causes the new pattern to become

the three regions of,, which are abové,, namely, between

stable. Thus, by adding &T to FS; we obtain arFSFT which

any two intervals belonging to the same region and having orbits js staple (slope smaller than 1), and again, ad@ifigo FS,FT

with n and m points, there is an interval with + m points

with the combined pattern. At times the combined orbit will

haven + m + 1 points due to the introduction of thET
sequence instead 8f This point will be treated in more detail
below.

We shall discuss our results in four regions in which, roughly

speaking, the main stable patterns Srevhich occurs at 0<
ko < I, FS, (with variations due to the exchange S for FTs)
which occurs betweeh andk; = 13(1 — 11)/(ks — 1) = 0.1029
where the patterfS begins,F,S, from the beginning oFSto
the end of stablé,S, andF,T which ends neaks.

3.1. Region I. In the region 0< k, < I, the functionf;
intersects the diagonal arsd < 1. Therefore the patter§is
stable all the way. However, the pattefi will also exist in
this region and will be unstable becawssg > 1 (see eqs+9).

In this simple case, we can calculate exactly the dependence

of SandFT patterns on the parametier, namely,

(12— k)(ks — ko)

STt T - (- 1) 13
_ Kol (kg — 1)

Ny —y (1)

Xp = | Iz(l - |1)(k3 - |1) (15)

LU= 1) — k(1 — k)

These values give, of courdéxs) = xsfor the stable pattern,
f(xr) = xr, andf(xr) = xg, for the unstable one.

results in a stabl&S(FT),, while FSFT does not exist.

As the pattern becomes more complicatéd,, when it
includes more points, its range becomes smaller, as can be seen
from the last column of the table.

As k> increases, the number 86 decreases until we reach
the next region withFS,

3.3. Region lll. In the regionly(1 — l1)/(ks — 1) < kz <
0.95 the slopes, is smaller tharss, and the main sequence of
the stable patterns is of the formS. For these patterns eqs
10 and 11 can be simplified using functifnonly,

™) = " (k) = " (0) =1 H(1) = kg (16)
for finding kop and
M o) = 7 H(fy (ko) = F (D) =171 1) = kye  (17)

for finding koe. The last equalities can be written explicitly as
simple polynomials in X, and in the case of our constant
parameters they are

n—1 O i
0.1 (—9) =k, (18)
1= I(213
n210.9\ 0.9\n1
015 [— +o.os(—9) = Ky (19)
1= k2e I(2e

It is seen that the number of solutions to the above equation
is limited since fom = 17 ko, = 0.973 627, but fon = 18, ko,

3.2. Region Il. Table 1 shows the main patterns in the region = 0.977 679 which is greater th&gand therefore inapplicable.

lo <k < |1(1 — |1)/(K3 — |1) = 0.1029 together with th&;

Table 2 summarizes these results. We observe the adding

intervals in which they exist. Patterns of the previous and the of Fs, which is a typical phenomenon caused by the shifting of
following regions are included for completeness. The general a branch (in our case the first) towards the diagénal.

form of the main patterns in each interval ES,—«(FT)x
appearing with its unstable partr€®,—«-1(FT)k+1 in the same
interval (wherem= 1,2, ..., andk =0, 1, ...). Decreasingp,
anSis added at each step, thus increasimy 1 and keeping
k constant. After some steps of increasimgk (and notm)
will increase by 1j.e., FT will be added, instead @, to obtain

The range of existence of the patterns decreasesnvéthin
the previous region. In fact, up to the point wh&ggbecomes
larger thankye (see next section), the range decreases as a
power: a plot of In(range) vs is a straight line with a slope of
—0.464.

3.4. Region IV. At n = 14 the value oky, becomes larger

a new stable pattern with its new unstable partner. Thus, asthan that ofkye (last column of Table 3), and at the same time
can be seen from Table 1, & decreases the patterns are the patterns change their stabilitye., Fn—1FT becomes stable,

changed by adding, thereby increasing frolaSto FS; to FS;
(increasingm by 1). The next step should have bee®, but

while F,—1S becomes unstable, contrary to the previous cases.
Table 3 shows the main patterns appearing in this range when

this pattern does not exist at all (eqs 10 and 11 have no F,T patterns are stable. These patterns go up=tal7, beyond
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TABLE 3: Main Patterns of the F,T Type

pattern pattern
(unstable)  (stable) eb Kee Koe — Koo N

Two Farey quotients

— (22)
F1:S RFT 0955803 0.955224 —5.7900e-4 Ne + Ngy
F1S FRFT 0962922 0.961808 —1.1140e-3
F1sS RsFT  0.968775 0.967 253 —1.5220e-3 me
F16S FeFT  0.973627 0.971793 —1.8340e-3 (23)

Mg + Mgy

are called neighbors if their cross multiplication equals.d.,

aRead as—5.7900x 104

which the values okz, andkz. become larger thaks, as stated
earlier, and our map looses its meaning.

The change of stability of the patterRg-i1SandF,—1FT will
occur whens, = s;53, which for our set of parameters, islat (assuming that thae ratio is larger than that of them one).
= 0.948 649. As can be seen from Tables 2 and 3, this point Two stable periodic orbits, which are Farey neighbors, may
is between the end d¥1,S and the beginning-13S. be combined to form a new stable orbit, with Farey quotient,

Table 3 shows also that the ranges of existence of the patternswhich is the Farey sum of the and m quotients, namely,

FnFT increase witm andk;, in contrast to what is observed in
Tables 1 and 2. e o M Ne + Mg

3.5. Composition Patterns. The regions described above ne+ng mMF+ mST_ Ne + Ngp+ Mg + mg;
show the existence of simple patterns of the typ&s (and
variations) and=,S (and variations). As we have seen in Figure The combined orbit can be easily verified to be a neighbor of
4, two such simple patterns may combine to form a concatenatedhoth its “parents”. Thus in the examples given ab&&and
pattern. Thus, between the patterdRS and FS; there is a FS with Farey quotients/, and /s, respectively, combine to
composed patterrSFS, and betweerFS and F2S there is give FSFS with Farey quotien®/s which is a neighbor of its
FSRES In Tabk 4 a variety of such composition patterns is parents. AlsdSandF,S (¥, and?s) give FSRS (3/5). More
shown. In this section, the behavior of these composition examples are given in Table 4, with the Farey quotients shown
patterns will be described with the aid of the Farey arithmi@tic. in parentheses.

We denote the number & points in a stable periodic orbit The entries in the table show that in some cases combination
by ne and the sum of the number &andT points bynsr. In occurs between one stable orbit and the unstable partner of its
this way we can assign a Farey quotient to each orbit as neighbor. When such combination occurs, the cross multiplica-

tion of the corresponding quotients will be

(20) (e + )M+ mg) — me(ne + 1+ ng) =
NeMgr+ Mg — MeNgr = 1+ Mgy (26)

Ne(Me + Mgp) — Me(Ne + Ngp) = NeMgr— Meng; =1 (24)

(25)

Ne
Ng + Ngp

The coexisting unstable orbit will have the same total number
of SandT points (since the number & decreases, while that
of the Ts increases by 1) while the numberFed increases by

1. The Farey quotient will be, therefore,

Thus, combinations are possible also between patterns that their
cross multiplication differ by # msy, provided that the relevant
combination existsi.e., that eqs 10 and 11 have a solution.
For instance, in the range 0.272 335k, < 0.272 553,
1 (FS)FFTF,S (8/19) is obtained from the stable patte®g),F,S
_F - (21) (%7) and the unstable patteR#T (%3). The cross multiplication
Ne+ 14 ngy isequal to 2x 10— 3 x 6 =2 =1+ mst. [Combining the

TABLE 4: Combination Patterns BetweenF,S, FS, FS,, FS;, and FS;FT

pattern (stable) pattern (unstable) Kap Kae Kap — kae
F2S (2) FoFT (%) 0.36 0.472 216 1.122¢l
FS(F29)s ("11) FFT(F29)s (812 0.348 246 0.351 341 3.0958
FS(F29): (%/s) FFT(F29)2 (®/9) 0.333 221 0.344 651 1.143¢@
FSRSFFTF29): (*/14) FFTRSFFT(F.S); (*%15) 0.329 865 0.331 040 1.1758
FSRS(ls) FFTF.S (“6) 0.290 241 0.32 753 3.729¢
(FS)F2S(“7) FSFFTRS (%) 0.27593 0.28 485 8.9283
(FS)FFTFS (8/10) FS(FFT)F2S (711) 0.272 335 0.272 553 2.184
(FOsFFTFS (12 (FOAFFT).F2S (Bl19) 0.269 110 0.270 515 1.4058
(FS)4FFTF:S (8/14) (FO3(FFT)2F2S (%15) 0.268 337 0.268 859 5.22d
(FS)sFFTF:S (%16) (F4(FFT)F2S (Y17) 0.268 152 0.268 193 4.16
(FS)s(FFT)2F2S (Y1) (FS)4(FFT)3F2S (*¥20) 0.268 009 0.268 073 6.46
FS(Y2) FFT (%) 0.102 857 0.267 944 1.65%4
(FS)FS: (Ys) (FO3sFSFT(%19) 0.099 144 6 0.099 594 8 45024
(F9FS: (%) (FOFSFT(%s) 0.094 7254 0.097 590 5 2.86518
FSFS (%s) FSFSFT(%/) 0.0838803 0.093 056 9 9.17668
FSFSFTFS(%9) (FSFT)2FS (%10) 0.082328 3 0.083 3336 1.0058
FS (M3) FSFT(%) 0.053997 3 0.081 809 9 2.78126p
(FS)FSFT (Y1) FSFSFTFSFT(%12) 0.053887 7 0.053947 3 5.968
FSFTFS (%s) FSFTFSFT(%o) 0.053 063 6 0.0538415 7.779¢
(FSFT)FS: (313 (FSFT).FSFT(%14) 0.052 788 3 0.0530121 2.238¢
FS; (Ys) FSFT (%s) 0.051 4918 0.0525201 1.02838
FSFTFSFT (Y11) FSFTFSFTFT (%/12) 0.051 008 0 0.051 224 3 2.163¢4
FSFT (%e) FS(FT)2 (34) 0.0501705 0.050 947 2 7.7674

aRead as 1.12% 10 L.
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neighborFS (/,), one should have obtaineB%)sF,S (%/g), but of two orbits, one stable and the other unstable that differ in
this pattern does not exist.] This behavior is very similar to one point, is a new phenomenon which is characteristic to the
what one sees in Table 1, whelf@s are added from time to  three-branched maps and has not been described hitherto in the

time instead of ars literature. The existence of the unstable “partner” explains the
Composed patterns can be formed, of course, also betweerdiscrepancies obtained in the Farey rule pattern composition.
patterns from different regions: the unstable pattgk T (from As orbits combine, the combination may occur between two

region Ill) is combined with the stable;sFT pattern (region SOs but also may occur between an SO and the “partner” UO
IV) to form the stableF;3TFi4T and its unstable partner (with an extra point) of the other “parent”. In other words the
F13TF13S. This occurs betweeky, = 0.951 533 andkoe = combination may occur not only between neighbors in the sense
0.951 529,i.e., between regions Il and IV. Note thég, > of eq 24, but also between patterns whose Farey ratios have a
koe, Since both are larger thdem = 0.948 649, where the stability  cross multiplication as in eq 26. Thus the combination rule,
change occurs. Finding the appropriate compositions of Table which was found both in the perturbed Oregonator and in the
4 can only be calculated by solving eqs 10 and 11. nonlinear hyperbolic three-branched map, finds a simple
The general rule for forming a combination of a stable orbit explanation through this work. This breaking of the Farey rule
with the partner of its neighbor can be formed as follows: has been observed in the perturbed Oregonator close to a saddle-
assume that a pattet8 is added each time to the sequed&e node bifurcation, therefore, one can expect the same phenom-
(wherelS andJSare neighbor sequences), thus obtainBdS enon in other systems near a saddle-node bifurcation that are
(19)2JS .... The unstable partners will HETJSISIFTJS .... periodically perturbed.
Since the sequend8 is stable then at each addition the slopes  The quantitative results presented here are dependent on the
of both partners will decrease. At a certain point, say the third particular fixed parameters (suchlasl,, etc.) that were used.
addition, the slope ofSISIFTJSwill become smaller than 1.  Thus for example the finite limit ofF which appear in
At this point, the sequencéSISIFTISwill become stable, subsequencesFk,S.. (n = 12), or finite limit of number ofF
ISISISISwill not exist, and a new unstable partner will be which appear in subsequenceB,T... (n = 17), will change if
formed, namely|SIFTIFTJS other parameters were used. However, the qualitative results
In the example given above fég = 0.2724, we obtain that  as the coexistence of stable and unstable orbits, the extension
the patternES)sF,Sdoes not exist and the pattefSj,FFTF,S of the Farey “neighbor” (eq 26) will remain the same as
and its unstable partn&S(FFT),F,Shave the slopes 0.937 612 described and will be applicable to nonlinear systems.

and 287.648, respectively, thus confirming the above rule. The results of our previous paperogether with those
presented above, are amenable to direct experimental test for
4. Discussion periodical perturbations of the BZ reaction that is qualitatively
In many oscillatory chemical systems the oscillations are described by the Oregonator model, or other similar models.
composed of series of small and large amplitude p&alk&: The behe_awor and ordering of small ampllt_ude osm!la_tlons can
Analysis of the next amplitude maps of the small amplitude Ee examined and compared to the theoretical predictions given
ere.
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