
Three-Branched Linear Map as a Model for a Perturbed Oregonator

A. L. Kawczyński*
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In the present paper we examine the behavior of a 3-branched linear map which resulted from computations
of the periodically perturbed Oregonator. It turns out that the linear map describes quite satisfactorily the
period composition predicted by the chemical model and by the more elaborated nonlinear hyperbolic maps
that were described in a previous publication. In particular, we have shown that in any interval of the control
parameter, two periodic orbits, differing by one point, coexist with one being stable and the other unstable.
This phenomenon is, to the best of our knowledge, described for the first time in the literature.

1. Introduction

One-dimensional return maps are very useful tool in the
investigations of the dynamics of nonlinear systems. The most
well known examples of such maps are the logistic map1 and
the sine or circle map.2 Another, less known example, is the
cusp map.3 In the field of theoretical biology, Glass and
Mackey4 and Keeneret al.5 have used a variety of maps to
investigate such problems as “integrate and fire” models.
Swinney6 and his collaborators have used logistic and sine maps
for investigating various aspects of the BZ oscillations, period
doubling and chaos formation. Two extrema maps were used
by Ringlandet al.7 to explain the smooth transformation from
U to Farey sequences observed in some cases. The maps can
be constructed from the experimental data as well as from the
numerical solutions of appropriate kinetic equations. Other
types of maps are also possible, as the three-branched map to
be described in the present paper.
Markman and Bar-Eli8 studied a periodically forced Orego-

nator and found a parameter range near a saddle-node bifurcation
with the following properties: (1) Patterns of large and small
oscillations are found in a frequency locked intervals. (2)
Between any two such intervals there is an interval with a
concatenation of the two patterns. Following this paper we
found a family of 1-D maps9 which describes in a satisfactory
way the calculated results.
The family of maps studied in ref 9 transforms the interval

[0, 1] onto itself and consists of 3 branches,i.e., it is
discontinuous at two points (sayk2 and k3). Its inverse also
transforms the unit interval onto itself; it is a function and is
discontinuous at two points (sayl2 and l1). Every branch of
the map is an increasing function ofx and is determined by a
hyperbolic curve. The family depends on the bifurcation
parameterk2 which defines the first point of the discontinuity
of the map.
These nonlinear (hyperbolic) maps are difficult to study and

we have chosen, therefore, to examine in more detail the
behavior of linear maps which are a reasonable approximation
to the maps described in ref 9.
The aim of the present paper is the description of discrete

dynamics generated by linear maps with three branches and the
comparison of the results with those of nonlinear maps and the
kinetic differential equations studied in ref 8.

The paper is organized as follows: in section 2 we describe
the properties of three-branched maps and define a family of
linear maps. In section 3 we describe results and in section 4
the results are discussed, differences between our map and others
are analyzed, and conclusions are presented.

2. Family of Three-Branched Maps

In nonlinear (hyperbolic) maps there may be two cases: (a)
the first branch touches (and intersects) the diagonal beforek2
approachesk3 or (b) the first branch does not touch the diagonal
beforek2 approachesk3.
It is obvious that in case a the first branch must be curved.

Thus, the replacement of hyperbolic maps by linear ones is
reasonable only in case b. We restrict our study to this latter
case.
The three-branched linear map, calledf(x), is defined as

follows:

With the conditions 0< k2 < k3 < 1 and 0< l2 < l1 < 1 in
order that the three branches will always exist. Thus the map
is defined on the interval 0e x e 1 and is discontinuous atx
) k2 and atx ) k3.
Since the map is invertible and linear, it is easy to write its

inverseg(x) ) f-1(x) as follows:
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f1(x) ) l1 +
(1- l1)

k2
x for 0e xe k2 (1)

f2(x) ) l2 +
(l1 - l2)

(k3 - k2)
(x- k2) for k2 < x< k3 (2)

f3(x) )
l2

(1- k3)
(x- k3) for k3 e xe 1 (3)

g1(x) )
1- k3
l2

x+ k3 for 0e xe l2 (4)

g2(x) )
k3 - k2
l1 - l2

(x- l2) + k2 for l2 < x< l1 (5)

g3(x) )
k2

1- l1
(x- l1) for l1 e xe 1 (6)
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The inverse map transforms the unit interval onto itself and is
discontinuous atx ) l1 and atx ) l2. This inverse map may
prove useful when calculating the unstable orbits (see below).
The parameters used in our particular calculations arel1 )

0.1, l2 ) 0.05,k3 ) 0.975, andk2 is used as a control parameter.
This linear map has, as can easily be seen, the general properties
of the nonlinear maps described above, and can, therefore, serve
as a good approximation for them in case b.
In Figure 1 a typical linear map fork2 ) 0.3 with its three

branches is shown. On the left the first branch rises froml1 )
0.1 atx ) 0 to 1 atx ) k2 ) 0.3; to the right of the diagonal,
the second branch rises froml2 ) 0.05 atk2 + δ to l1 at k3 -
δ; finally, the thirrd branch rises from 0 atk3 to l2 at 1. The
figure is very similar to Figure 3 of ref 9 in which a three-
branched hyperbolic map is shown, thus substantiating our
assumption that linear maps may serve as a good simple way
to study the more complicated nonlinear system.
A cycle of n points, (x1, x2, ..., xn) or an n periodic orbit,

(whether stable or unstable) will exist iff n(xi) ) xi (i ) 1, 2,
..., n). The points will be termedF, S, or T if they belong to
the first region (f1), second region (f2), or third region (f3),

respectively. Thus a pattern will be a sequence ofF, S, andT
points. The stability of the orbit will be determined by the
product of the slopes at the pointsxi: the orbit will be stable
(unstable) if the product is smaller (larger) than 1. Since the

Figure 1. A plot of a typical 3 branch map (eqs 5-7) for the fixed
parametersl1 ) 0.1, l2 ) 0.05,k3 ) 0.975 and the variable parameter
k2 ) 0.3. The thick line is the map, while the thin line shows the
diagonal.

Figure 2. A plot of x vs 0.29< k2 < 0.33, showing the stable orbits
(thick lines) and the coexisting unstable ones (thin lines) which occur
in this region. The pattern of the SO, isFSF2S, while that of the UO,
is FFTF2S.

Figure 3. A series of plots showing the way the fifth (thick lines) and
sixth (thin lines) iteration of the map change ask2 move fromk2b )
0.290 241 tok2e ) 0.327 53. (The only significant “pieces” are those
near the diagonal.) (a)k2 ) k2b. The “staircase” of stable and unstable
parts just touch the diagonal at the beginning of the region (b)k2 )
0.3 The “staircase” is in the middle of the region. (c)k2 ) k2e. The
“staircase” just detach from the diagonal at the end of the region.
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map is linear, it is easy to see that the slopes are given by

As the parameterk2 changes, a variety of orbits and patterns
will appear, only once, at some interval ofk2.
All periodic orbits appear as pairs of stable, SO, and unstable,

UO, orbits, which differ by one in the number of points. Every
pair SO and UO begins atk2b where the appropriate “piece” of
thenth and (n + 1)th iterate ofk3 touch the diagonal together.
The interval for this pair of orbits ends atk2ewhere thenth and
(n+ 1)th iterate detach the diagonal. The values ofk2b andk2e
are the solutions of the following equations:

These equations are then + 1 iterates of the discontinuities of
the map. In what follows we show that at these points thenth
and the (n + 1)th iterates coincide.
It is easy to see, from the definition of the mapf(x), that the

following transformations are fulfilled:

The discontinuities at the break pointsk2 andk3 are clearly seen
asδ f 0.
Suppose now that the pointk3 - δ belongs to ann periodic

orbit at somek2, slightly larger thank2b. There will be a
sequence ofn points of the form (sequence I):

As δ f 0, the first point will approachl1, whereas the last
point will approachk3. At exactly δ ) 0 a new sequence
(sequence II) withn + 1 points will be formed, namely,

which has anF and T points (with x ) 0 and x ) k3,
respectively), instead of theS (with x ) k3 - δ) point.

At the other end of the interval, when the pointk2e is
approached, we obtain the following sequence ofn points,
namely (sequence III),

which has its limit in a the sequence IV ofn + 1 points:

Again, sequence IV has anF and T (x ) k2e and x ) 1)
points instead of anS (x ) k2e + δ) point in sequence III.
By changingk2 continuously fromk2b to k2e, sequence I is

changed smoothly to sequence III, while sequence II is changed
to IV. Thus, at each value ofk2, in the interval [k2b, k2e], two
sequences (orbits, patterns) coexist: one withn points and the
other withn + 1 points. The sequences or patterns will differ
by one point where anSpoint is changed to anFT pair. One
of the sequences will be stable and the other will be unstable
(depending on the ratios1s3/s2 being larger or smaller than one).
The above description can be clearly seen in Figure 2 which

shows a plot ofn points of SO andn + 1 points of UO as a
function ofk2 between 0.290 241 and 0.327 53. The plot, zigzag
shaped, has the unstable portions (in thin lines) going up from
left to right, while those of the stable portions (thick lines) are
going down. At the extreme ends,i.e., at k2b andk2e, the SO
and UO join together, as described above.
In Figure 3 we show an example of the touching and

detaching of the pair of patternsFSF2SandFFTF2Sby plotting
the fifth and sixth iterates of the map atk2b ) 0.290 241,k2 )
0.3 at the middle of the interval and atk2e) 0.32753. In these
figures we see the fifth (thick lines) and sixth iterate (thin lines)
form together a sort of a “staircase” where the SO form the flat
parts (slope smaller than 1) and the UO form the steep “jumps”
(slope larger than 1). Note that thenth iterate of the three-
branched map has 2n+ 1 “pieces” thus the figure contains some
more points than the “staircase” of interest. As will be seen
below, there may be more than one solution to equations 10
and 11,i.e., there may be more than one pattern with the same
number of points, existing, of course, in different regions ofk2.

3. Results

In Figure 4 we see a typical histogram showing the
dependence of thestableorbits on the parameterk2 in the region

s1 )
1- l1
k2

) 0.9
k2

(7)

s2 )
l1 - l2
k3 - k2

) 0.05
0.975- k2

(8)

s3 )
l2

1- k3
) 2 (9)

f n+1(k3) ) k3 ) 0.975 (10)

f n+1(k2e) ) k2e (11)

0f l1

0+ δ f l1 + δs1

k2 - δ f 1- δs1

k2 f 1

k2 + δ f l2 + δs2

k3 - δ f l1 - δs2

k3 f 0

k3 + δ f 0+ δs3

1f l2 (12)

l1–δs2, ..., k3–δ,   l1–δs2, ..., k3–δ,   .... (I)

n  points

(II)
n+1 points

k3, 0, l1, ...,   k3, 0, l1,   ...

Figure 4. A typical histogram of 0.2< k2 < 0.4. The values ofk2 and
k3 ) 0.975 are shown as thin lines. Only the stable points are shown.

(III)

n  points

k2e + δ, l2 + δs2, ...,   k2e + δ, l2 + δs2,   ...

(IV)
n+1 points

k2e, 1, l2, ...,   k2e, 1, l2, ...

4594 J. Phys. Chem. A, Vol. 101, No. 25, 1997 Kawczyński and Bar-Eli



[0.2, 0.4]. The linesk2 andk3 are also drawn in order to stress
the various pointsF, S, orT. On the left the patternFSis clearly
seen, while on the right one sees theF2Spattern. The composed
FSF2Spattern appears in the middle. Other compositions with
more complicated patterns, occupying rather narrow regions,
can be also seen in this interval. This behavior is typical for
the three regions ofk2, which are abovel2, namely, between
any two intervals belonging to the same region and having orbits
with n andm points, there is an interval withn + m points
with the combined pattern. At times the combined orbit will
have n + m + 1 points due to the introduction of theFT
sequence instead ofS. This point will be treated in more detail
below.
We shall discuss our results in four regions in which, roughly

speaking, the main stable patterns areS, which occurs at 0<
k2 < l2, FSn (with variations due to the exchange ofSs forFTs)
which occurs betweenl2 andk2 ) l1(1- l1)/(k3 - l1) ) 0.1029
where the patternFSbegins,FnS, from the beginning ofFS to
the end of stableFnS, andFnT which ends neark3.
3.1. Region I. In the region 0< k2 < l2, the functionf2

intersects the diagonal ands2 < 1. Therefore the patternS is
stable all the way. However, the patternFT will also exist in
this region and will be unstable becauses3s1 > 1 (see eqs 7-9).
In this simple case, we can calculate exactly the dependence

of SandFT patterns on the parameterk2, namely,

These values give, of course,f(xS) ) xS for the stable pattern,
f(xF) ) xT, andf(xT) ) xF, for the unstable one.
3.2. Region II.Table 1 shows the main patterns in the region

l2 < k2 < l1(1 - l1)/(k3 - l1) ) 0.1029 together with thek2
intervals in which they exist. Patterns of the previous and the
following regions are included for completeness. The general
form of the main patterns in each interval isFSm-k(FT)k
appearing with its unstable partnerFSm-k-1(FT)k+1 in the same
interval (wherem) 1,2, ..., andk ) 0, 1, ...). Decreasingk2,
anS is added at each step, thus increasingm by 1 and keeping
k constant. After some steps of increasingm, k (and notm)
will increase by 1,i.e., FTwill be added, instead ofS, to obtain
a new stable pattern with its new unstable partner. Thus, as
can be seen from Table 1, ask2 decreases the patterns are
changed by addingS, thereby increasing fromFS to FS2 to FS3
(increasingm by 1). The next step should have beenFS4, but
this pattern does not exist at all (eqs 10 and 11 have no

solutions), and the pairFS3FT andFS2(FT)2 appears instead.
The change from adding anS to adding anFT occurs when the
adding of the latter pattern causes the new pattern to become
stable. Thus, by adding anFT toFS3 we obtain anFS3FTwhich
is stable (slope smaller than 1), and again, addingFT to FS4FT
results in a stableFS4(FT)2, while FS5FT does not exist.
As the pattern becomes more complicated,i.e., when it

includes more points, its range becomes smaller, as can be seen
from the last column of the table.
As k2 increases, the number ofSs decreases until we reach

the next region withFS.
3.3. Region III. In the regionl1(1 - l1)/(k3 - l1) < k2 <

0.95 the slopes2 is smaller thans3, and the main sequence of
the stable patterns is of the formFnS. For these patterns eqs
10 and 11 can be simplified using functionf1 only,

for finding k2b and

for finding k2e. The last equalities can be written explicitly as
simple polynomials in 1/k2, and in the case of our constant
parameters they are

It is seen that the number of solutions to the above equation
is limited since forn ) 17 k2b ) 0.973 627, but forn ) 18,k2b
) 0.977 679 which is greater thank3 and therefore inapplicable.
Table 2 summarizes these results. We observe the adding

of Fs, which is a typical phenomenon caused by the shifting of
a branch (in our case the first) towards the diagonal.3

The range of existence of the patterns decreases withn as in
the previous region. In fact, up to the point wherek2b becomes
larger thank2e (see next section), the range decreases as a
power: a plot of ln(range) vsn is a straight line with a slope of
-0.464.
3.4. Region IV. At n ) 14 the value ofk2b becomes larger

than that ofk2e (last column of Table 3), and at the same time
the patterns change their stability,i.e., Fn-1FT becomes stable,
while Fn-1Sbecomes unstable, contrary to the previous cases.
Table 3 shows the main patterns appearing in this range when
FnT patterns are stable. These patterns go up ton) 17, beyond

TABLE 1: Main Patterns of the Type FSn

pattern
(stable)

pattern
(unstable) k2b k2e k2b - k2e

S FT 0.0 0.05 0.05
FS5(FT)2 FS4(FT)3 0.050 001 4 0.050 006 4 5e-6a
FS4(FT)2 FS3(FT)3 0.050 008 3 0.050 031 2.27e-5
FS4FT FS3(FT)2 0.050 042 9 0.050 129 2 8.63e-5
FS3FT FS2(FT)2 0.050 170 5 0.050 947 2 7.767e-4
FS3 FS2FT 0.051 491 8 0.052 520 1 1.0283e-3
FS2 FSFT 0.053 997 3 0.081 809 9 2.78126e-2
FS FFT 0.102 857 14 0.267 944 1.65086e-1

aRead as 5× 10-6.

xS ) k2 +
(l2 - k2)(k3 - k2)

(k3 - k2) - (l1 - l2)
(13)

xF )
k2l2(k3 - l1)

l2(1- l1) - k2(1- k3)
(14)

xT ) l1 +
l2(1- l1)(k3 - l1)

l2(1- l1) - k2(1- k3)
(15)

TABLE 2: Main Patterns of the FnS Type

pattern
(stable)

pattern
(unstable) k2b k2e k2e- k2b

FS FFT 0.102 857 14 0.267 944 1.65086e-1
F2S F2FT 0.36 0.472 216 1.12216e-1
F3S F3FT 0.548 522 0.615 817 6.72950e-2
F4S F4FT 0.672 068 0.713 194 4.11260e-2
F5S F5FT 0.754 566 0.780 454 2.58880e-2
F6S F6FT 0.811 621 0.828 255 1.66340e-2
F7S F7FT 0.852 422 0.863 186 1.07240e-2
F8S F8FT 0.882 454 0.889 348 6.89400e-3
F9S F9FT 0.905 104 0.909 363 4.25900e-3
F10S F10FT 0.922 541 0.924 956 2.41500e-3
F11S F11FT 0.9362 0.937 296 1.09600e-3
F12S F12FT 0.947 059 0.947 193 1.34000e-4
aRead as 1.65086× 10-1.

f n+1(k3) ) f n-1f(f3(k3) ) f n-1f1(0)) f 1
n-1(l1) ) k3 (16)

f n+1(k2e) ) f n-1f(f1(k2e)) ) f n-1f1(1)) f 1
n-1(l2) ) k2e (17)

0.1∑
i)0

n-1(0.9k2b)
i

) k3 (18)

0.1∑
i)0

n-2(0.9k2e)
i

+ 0.05(0.9k2e)
n-1

) k2e (19)
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which the values ofk2b andk2e become larger thank3, as stated
earlier, and our map looses its meaning.
The change of stability of the patternsFn-1SandFn-1FTwill

occur whens2 ) s1s3, which for our set of parameters, is atk2
) 0.948 649. As can be seen from Tables 2 and 3, this point
is between the end ofF12Sand the beginningF13S.
Table 3 shows also that the ranges of existence of the patterns

FnFT increase withn andk2, in contrast to what is observed in
Tables 1 and 2.
3.5. Composition Patterns. The regions described above

show the existence of simple patterns of the typesFSn (and
variations) andFnS(and variations). As we have seen in Figure
4, two such simple patterns may combine to form a concatenated
pattern. Thus, between the patternsFS and FS2 there is a
composed patternFSFS2, and betweenFS and F2S there is
FSF2S. In Table 4 a variety of such composition patterns is
shown. In this section, the behavior of these composition
patterns will be described with the aid of the Farey arithmetic.12

We denote the number ofF points in a stable periodic orbit
by nF and the sum of the number ofSandT points bynST. In
this way we can assign a Farey quotient to each orbit as

The coexisting unstable orbit will have the same total number
of SandT points (since the number ofSs decreases, while that
of theTs increases by 1) while the number ofFs increases by
1. The Farey quotient will be, therefore,

Two Farey quotients

are called neighbors if their cross multiplication equals 1,i.e.

(assuming that then ratio is larger than that of them one).
Two stable periodic orbits, which are Farey neighbors, may

be combined to form a new stable orbit, with Farey quotient,
which is the Farey sum of then andm quotients, namely,

The combined orbit can be easily verified to be a neighbor of
both its “parents”. Thus in the examples given aboveFSand
FS2 with Farey quotients1/2 and1/3, respectively, combine to
give FSFS2 with Farey quotient2/5 which is a neighbor of its
parents. AlsoFSandF2S (1/2 and2/3) giveFSF2S (3/5). More
examples are given in Table 4, with the Farey quotients shown
in parentheses.
The entries in the table show that in some cases combination

occurs between one stable orbit and the unstable partner of its
neighbor. When such combination occurs, the cross multiplica-
tion of the corresponding quotients will be

Thus, combinations are possible also between patterns that their
cross multiplication differ by 1+ mST, provided that the relevant
combination exists,i.e., that eqs 10 and 11 have a solution.
For instance, in the range 0.272 335< k2 < 0.272 553,

(FS)2FFTF2S(6/10) is obtained from the stable pattern (FS)2F2S
(4/7) and the unstable patternFFT (2/3). The cross multiplication
is equal to 2× 10- 3 × 6 ) 2 ) 1 + mST. [Combining the

TABLE 3: Main Patterns of the FnT Type

pattern
(unstable)

pattern
(stable) k2b k2e k2e- k2b

F13S F13FT 0.955 803 0.955 224 -5.7900e-4
F14S F14FT 0.962 922 0.961 808 -1.1140e-3
F15S F15FT 0.968 775 0.967 253 -1.5220e-3
F16S F16FT 0.973 627 0.971 793 -1.8340e-3

aRead as-5.7900× 10-4.

TABLE 4: Combination Patterns BetweenF2S, FS, FS2, FS3, and FS3FT

pattern (stable) pattern (unstable) k2b k2e k2b - k2e

F2S(2/3) F2FT (3/4) 0.36 0.472 216 1.122e-1
FS(F2S)3 (7/11) FFT(F2S)3 (8/12) 0.348 246 0.351 341 3.095e-3
FS(F2S)2 (5/8) FFT(F2S)2 (6/9) 0.333 221 0.344 651 1.143e-2
FSF2SFFT(F2S)2 (9/14) FFTF2SFFT(F2S)2 (10/15) 0.329 865 0.331 040 1.175e-3
FSF2S(3/5) FFTF2S(4/6) 0.290 241 0.32 753 3.729e-2
(FS)2F2S(4/7) FSFFTF2S(5/8) 0.275 93 0.28 485 8.92e-3
(FS)2FFTF2S(6/10) FS(FFT)2F2S(7/11) 0.272 335 0.272 553 2.18e-4
(FS)3FFTF2S(7/12) (FS)2(FFT)2F2S(8/13) 0.269 110 0.270 515 1.405e-3
(FS)4FFTF2S(8/14) (FS)3(FFT)2F2S(9/15) 0.268 337 0.268 859 5.22e-4
(FS)5FFTF2S(9/16) (FS)4(FFT)2F2S(10/17) 0.268 152 0.268 193 4.1e-5
(FS)5(FFT)2F2S(11/19) (FS)4(FFT)3F2S(12/20) 0.268 009 0.268 073 6.4e-5
FS(1/2) FFT (2/3) 0.102 857 0.267 944 1.651e-1
(FS)3FS2 (4/9) (FS)3FSFT(5/10) 0.099 144 6 0.099 594 8 4.502e-4
(FS)2FS2 (3/7) (FS)2FSFT(4/8) 0.094 725 4 0.097 590 5 2.8651e-3
FSFS2 (2/5) FSFSFT(3/6) 0.083 880 3 0.093 056 9 9.1766e-3
FS2FSFTFS(4/9) (FSFT)2FS(5/10) 0.082 328 3 0.083 333 6 1.005e-3
FS2 (1/3) FSFT(2/4) 0.053 997 3 0.081 809 9 2.78126e-2
(FS2)2FS2FT (4/11) FS2FS2FTFSFT(5/12) 0.053 887 7 0.053 947 3 5.96e-5
FS2FTFS2 (3/8) FS2FTFSFT(4/9) 0.053 063 6 0.053 841 5 7.779e-4
(FS2FT)2FS2 (5/13) (FS2FT)2FSFT(6/14) 0.052 788 3 0.053 012 1 2.238e-4
FS3 (1/4) FS2FT (2/5) 0.051 491 8 0.052 520 1 1.0283e-3
FS2FTFS3FT (4/11) FS2FTFS2FTFT (5/12) 0.051 008 0 0.051 224 3 2.163e-4
FS3FT (2/6) FS2(FT)2 (3/7) 0.050 170 5 0.050 947 2 7.767e-4

aRead as 1.122× 10-1.

nF
nF + nST

(22)

mF

mF + mST
(23)

nF(mF + mST) - mF(nF + nST) ) nFmST- mFnST) 1 (24)

nF
nF + nST

x
mF

mF+ mST
)

nF + mF

nF + nST+ mF + mST
(25)

(nF + 1)(mF + mST) - mF(nF + 1+ nST) )
nFmST+ mST- mFnST) 1+ mST (26)

nF
nF + nST

(20)

nF + 1

nF + 1+ nST
(21)
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neighborFS (1/2), one should have obtained (FS)3F2S (5/9), but
this pattern does not exist.] This behavior is very similar to
what one sees in Table 1, whereFTs are added from time to
time instead of anS.
Composed patterns can be formed, of course, also between

patterns from different regions: the unstable patternF12FT (from
region III) is combined with the stableF13FT pattern (region
IV) to form the stableF13TF14T and its unstable partner
F13TF13S. This occurs betweenk2b ) 0.951 533 andk2e )
0.951 529,i.e., between regions III and IV. Note thatk2b >
k2e, since both are larger thank2 ) 0.948 649, where the stability
change occurs. Finding the appropriate compositions of Table
4 can only be calculated by solving eqs 10 and 11.
The general rule for forming a combination of a stable orbit

with the partner of its neighbor can be formed as follows:
assume that a patternIS is added each time to the sequenceJS
(whereISandJSare neighbor sequences), thus obtainingISJS,
(IS)2JS, .... The unstable partners will beIFTJS,ISIFTJS, ....
Since the sequenceIS is stable then at each addition the slopes
of both partners will decrease. At a certain point, say the third
addition, the slope ofISISIFTJSwill become smaller than 1.
At this point, the sequenceISISIFTJSwill become stable,
ISISISJSwill not exist, and a new unstable partner will be
formed, namely,ISIFTIFTJS.
In the example given above fork2 ) 0.2724, we obtain that

the pattern (FS)3F2Sdoes not exist and the pattern (FS)2FFTF2S
and its unstable partnerFS(FFT)2F2Shave the slopes 0.937 612
and 287.648, respectively, thus confirming the above rule.

4. Discussion

In many oscillatory chemical systems the oscillations are
composed of series of small and large amplitude peaks.8,10,11

Analysis of the next amplitude maps of the small amplitude
oscillations obtained from the perturbed Oregonator8,9 revealed
that in some cases a three-branched map appears. These maps
have the following properties: (a) each branch increases
monotonically and (b) the maps are invertible, which means
that their reciprocals are single valued. As the mathematics of
three-branched maps is comparatively unknown, we have
constructed and studied in a previous publication9 a family such
three-branched maps containing hyperbolas. A very good
agreement with the calculated results of Markman and Bar-Eli8

has been obtained. In particular, the composition rule of the
obtained patterns follows roughly the Farey arithmetic12 eq 25.
The composition occurs between those patterns that are neigh-
bors in the sense of eq 24. However, a closer look at the results
shows that the simple rule of the period combination does not
always follow the Farey arithmetic, but that at certain intervals
there is an extra point on the combined orbit due to the existence
of the two pointsFT instead of the singleSpoint. In order to
facilitate the investigation of such three-branched maps, we have
studied in this work three-branched linear maps that ap-
proximate, quite adequately, the three hyperbolic branches. We
have found, first of all, that all periodic orbits (patterns and
sequences) appear in pairs, one stable SO and the other unstable
UO. The pairs differ in one point: the UO have two pointsFT
instead of anS of the SO. (fork2 > 0.95 the stable partner
will be the one withFT, while the unstable partner will have
anS instead, as explained in the text above). The coexistence

of two orbits, one stable and the other unstable that differ in
one point, is a new phenomenon which is characteristic to the
three-branched maps and has not been described hitherto in the
literature. The existence of the unstable “partner” explains the
discrepancies obtained in the Farey rule pattern composition.
As orbits combine, the combination may occur between two
SOs but also may occur between an SO and the “partner” UO
(with an extra point) of the other “parent”. In other words the
combination may occur not only between neighbors in the sense
of eq 24, but also between patterns whose Farey ratios have a
cross multiplication as in eq 26. Thus the combination rule,
which was found both in the perturbed Oregonator and in the
nonlinear hyperbolic three-branched map, finds a simple
explanation through this work. This breaking of the Farey rule
has been observed in the perturbed Oregonator close to a saddle-
node bifurcation, therefore, one can expect the same phenom-
enon in other systems near a saddle-node bifurcation that are
periodically perturbed.
The quantitative results presented here are dependent on the

particular fixed parameters (such ask3, l1, etc.) that were used.
Thus for example the finite limit ofF which appear in
subsequences ...FnS... (n ) 12), or finite limit of number ofF
which appear in subsequences ...FnT... (n ) 17), will change if
other parameters were used. However, the qualitative results
as the coexistence of stable and unstable orbits, the extension
of the Farey “neighbor” (eq 26) will remain the same as
described and will be applicable to nonlinear systems.
The results of our previous paper,9 together with those

presented above, are amenable to direct experimental test for
periodical perturbations of the BZ reaction that is qualitatively
described by the Oregonator model, or other similar models.
The behavior and ordering of small amplitude oscillations can
be examined and compared to the theoretical predictions given
here.
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